Surveillance in Data Management in the DRC Ebola Response

Experiences from Goma

CDR James Coburn, MSc, CPH

Office of Counterterrorism and Emerging Threats
Office of the Chief Scientist
Brief Background

• Initial DRC Ebola Cases in 2018
Goma Background

• Major city and transit hub close to the outbreak
 – Location of the DRC national coordination
 – Central point for DRC, local, U.S. Government and NGO personnel to meet and work
 – Active groups include DRC MoH, CDC Africa, WHO, Unicef, IFRC, MSF CDC, US AID, others.

• Two cases in Goma in July 2019

• Put city on high alert and increased the surveillance and data collection activities
What goes into disease surveillance?

• Collecting biological samples from suspected or confirmed cases
 – Laboratory testing
 – Genetic sequencing

• Identifying and collecting other data from a population

• Aggregating and managing data

• Data analysis and Statistics
My role in the DRC Ebola response

- **Detailed** to the Centers for Disease Control

- **Embedded** within the surveillance section of the Provincial Department of Health (Goma DPS)

- **Goal:** Improve data collection and management for potential and validated alerts through standardizing procedures and creating better software tools

- **Scope:** Work with surveillance & alert data (not case data) in sub-commissions
 - Surveillance
 - Infection Prevention and Control
 - Safe and Dignified Burial
 - Vaccination
 - Medical support
 - Security
 - Point of Entry
 - Laboratory
 - Psychosocial Support
 - Communications
 - Logistics
 - Follow-up
How was surveillance done in Goma?

• Passive Research
 – FOSAs call or send in alerts that they identify
 – Numbers only – typically no forms provided
 – System put in place to confirm receipt of a “no alerts” message differentiating from “no contact”
 – Allows for alert investigation outside of standard daily visit

• Two difficulties with passive data
 – People often don’t always have access or can’t afford medical clinics that do passive reporting
 – There is a stigma with Ebola that will sometimes make people hide when they think they have it or flee if they are told they are a suspect case.
How was surveillance done in Goma?

- **Active Research**
 - Daily activities
 - Teams (2-3/area, ~50 people total) go to the FOSAs (medical facilities)
 - Relais Communitaires (>150 total), each visit 25 homes per day
 - Everyone is connected by cell phone / whatsapp
 - Teams meet twice a day 7 days a week

 - Data collected
 - **FOSA teams**: incoming patients with symptoms meeting alert definition
 - **Recos**: Go house to house identifying sick household members and refer as alerts if necessary
Active Research is intensive
Data collected on patients who:

- Came through clinic intake
- Have possible symptoms
- For each patient:
 - interviewed by team
 - Check against case definition
 - Transferred to CTE if necessary

- Recos can have very different neighborhoods in which to work (see pictures)
 - Different languages spoken
 - Using technology (phones) not always appropriate
FOSAs also vary widely

Heal Africa, NGO supported hospital

Traditional Practitioner’s clinic
Active Research could be complicated
Active Research could be complicated

- Interviews and handwritten logbooks in either French, Swahili, or tribal language
- Hard to track patients who stop in quickly
 - Metadata only collected when alert is validated
 - Demographics hard to verify
- Incentives to create alerts
 - Number of alerts is a WHO metric for “success”
 - Investigate more rigorously to meet quotas
- Poor tracking of time to completing investigation
Digitizing data is not trivial
Digitizing data is not trivial

• Views and alerts transferred to white board

• Aggregate data from each team entered into computer by hand

• Sheets typed by hand
 – (names are hard to track, addresses don’t often exist)

• Validated alerts given separate sheets and a unique identifier

• Re-entered into system that communicates with National Coordination
Where does the data go?

• Daily briefings with key indicators and dashboards to sub-commission
• Data from validated alerts sent to national coordination (Epi-Info VHF)
• All data sent to national coordination weekly
• Ideally: Sub-commissions can monitor trends to allocate resources
• Data flow from national level to areas without a current case or outbreak is often reduced.
 – Need for local capabilities
What about other subcommissions?
How well could we combine data?

- Each sub-commission had a database
- Names could not always be matched (formatting)
- Addresses & birthdates were not always accurate
- Unique identifiers applied to validated alerts were usually followed from transfer to Ebola Treatment Center
- Alerts being followed could not easily be tracked
<table>
<thead>
<tr>
<th>Date</th>
<th>Equipe</th>
<th>Zone de Santé</th>
<th>Aire de Santé</th>
<th>Structures Prévues</th>
<th>Structures Réalisées</th>
<th>Consultations</th>
<th>Répondant à la Définition de Cas</th>
<th>Déchargées</th>
<th>Alertes</th>
<th>Investiguées</th>
<th>Validées</th>
<th>Contacts Préal.</th>
<th>Transféré au CTE</th>
<th>Non-Transféré au CTE</th>
<th>Raison de Non-Transfer</th>
</tr>
</thead>
<tbody>
<tr>
<td>22/10/2019</td>
<td>24</td>
<td>Karisimbi</td>
<td>Murara</td>
<td>6</td>
<td>6</td>
<td>56</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22/10/2019</td>
<td>25</td>
<td>Karisimbi</td>
<td>Munyango Resurrection</td>
<td>9</td>
<td>9</td>
<td>13</td>
<td>6</td>
<td>0</td>
<td>6</td>
<td>6</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22/10/2019</td>
<td>27</td>
<td>Karisimbi</td>
<td>N directory</td>
<td>9</td>
<td>9</td>
<td>26</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22/10/2019</td>
<td>28</td>
<td>Karisimbi</td>
<td>Rapha</td>
<td>7</td>
<td>7</td>
<td>16</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22/10/2019</td>
<td>29</td>
<td>Karisimbi</td>
<td>Virunga</td>
<td>11</td>
<td>11</td>
<td>59</td>
<td>4</td>
<td>0</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22/10/2019</td>
<td>30</td>
<td>Nyiragongo</td>
<td>Kanyaruchinya</td>
<td>8</td>
<td>8</td>
<td>27</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22/10/2019</td>
<td>32</td>
<td>Nyiragongo</td>
<td>Ngangili</td>
<td>10</td>
<td>10</td>
<td>19</td>
<td>5</td>
<td>0</td>
<td>5</td>
<td>5</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22/10/2019</td>
<td>33</td>
<td>Nyiragongo</td>
<td>Kigali</td>
<td>2</td>
<td>2</td>
<td>48</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22/10/2019</td>
<td>34</td>
<td>Nyiragongo</td>
<td></td>
</tr>
</tbody>
</table>

SURVEILLANCE

<table>
<thead>
<tr>
<th>Seuil</th>
<th>TOTAL GOMA</th>
<th>GOMA</th>
<th>NYIRAGONGO</th>
<th>KARISIMBI</th>
<th>BINZA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complétude des Zones de santé</td>
<td>17/17</td>
<td>100%</td>
<td>Oui (>0)</td>
<td>Oui (>0)</td>
<td>Oui (>0)</td>
</tr>
<tr>
<td>Nombre d'alertes notifiées</td>
<td>619/619</td>
<td>100%</td>
<td>91/91</td>
<td>43/43/1</td>
<td>128/128</td>
</tr>
<tr>
<td>Proportion des alertes investiguées dans les 24 heures</td>
<td>619/619</td>
<td>100%</td>
<td>91/91</td>
<td>43/43/1</td>
<td>128/128</td>
</tr>
<tr>
<td>Proportion des décès communautaires valides ayant bénéficié d'un prélèvement – Swab</td>
<td>25/28</td>
<td>89%</td>
<td>13/13</td>
<td>1/1</td>
<td>0/0</td>
</tr>
<tr>
<td>Proportion des décès suspects vivants transférés au CTE/CT dans les 24 heures</td>
<td>19/20</td>
<td>95%</td>
<td>50%</td>
<td>1/1</td>
<td>0/0</td>
</tr>
<tr>
<td>Proportion des FOSA visitées par rapport aux FOSA prévue pour la recherche active</td>
<td>326/326</td>
<td>100%</td>
<td>76/76</td>
<td>6/61</td>
<td>0/0</td>
</tr>
<tr>
<td>Proportion des décès attendus</td>
<td>227/619</td>
<td>37%</td>
<td>57/91</td>
<td>63%</td>
<td>0/0</td>
</tr>
<tr>
<td>Complétude des Zones de santé</td>
<td>17/17</td>
<td>100%</td>
<td>Oui (>0)</td>
<td>Oui (>0)</td>
<td>Oui (>0)</td>
</tr>
<tr>
<td>Proportion des alertes investiguées dans les 24 heures</td>
<td>619/619</td>
<td>100%</td>
<td>91/91</td>
<td>43/43/1</td>
<td>128/128</td>
</tr>
<tr>
<td>Proportion des décès communautaires valides ayant bénéficié d'un prélèvement – Swab</td>
<td>25/28</td>
<td>89%</td>
<td>13/13</td>
<td>1/1</td>
<td>0/0</td>
</tr>
<tr>
<td>Proportion des décès suspects vivants transférés au CTE/CT dans les 24 heures</td>
<td>19/20</td>
<td>95%</td>
<td>50%</td>
<td>1/1</td>
<td>0/0</td>
</tr>
<tr>
<td>Proportion des FOSA visitées par rapport aux FOSA prévue pour la recherche active</td>
<td>326/326</td>
<td>100%</td>
<td>76/76</td>
<td>6/61</td>
<td>0/0</td>
</tr>
<tr>
<td>Proportion des décès attendus</td>
<td>227/619</td>
<td>37%</td>
<td>57/91</td>
<td>63%</td>
<td>0/0</td>
</tr>
</tbody>
</table>
So much data – how do we make sense?

• Summary tables, dashboards, and figures
 – Reported on separately to sub-coordination
 – Sent separately to national level

• Reports performed daily
 – Little time to perform trends or analysis locally
 – Deep knowledge within each team of the data contents
Difficulties with data: Technical

- Manual/paper collection and transfer can lead to anomalies
- Data needs constant upkeep and cleaning (eg dates, names)
- Databases don’t align or synchronize
- Sample processing or other possible errors are not captured in lab databases
- Understanding the limits of data quality
Difficulties with Data: other

- Human incentives and disincentives for responders can unintentionally bias the field data
 - Quotas
 - Workload / effort

- Reporting tempo (daily)

- Target levels for specific indicators

- Inter-organizational communications

- Community reluctance or local instability
Strengths of DRC data

• Dedicated teams

• Training is leading to improvements

• Case tracking is well established

• Lots of data for modeling
Training can help increase confidence

- Requested by Ministry of Health
- Responders were eager to participate and learn
- Focuses on real needs for daily workload
- Plans to expand nationally
Acknowledgements

- **CDC**
 - Kristen Pettrone, MD
 - Noémi Hall, PhD
 - Mary Claire Worrell, PhD
 - John Neatherlin, PhD

- **Goma DPS**
 - Serge Kiyimbi
 - Dr. Thierry Muhemedi
 - Dr. Gaston Tshapenda